Physics Comments and Marking Guidelines

Please note that these are NOT model solutions but comments and guidelines to markers.

Question 1:

(a) Tension proportional to extension: $T=k y$. As a rope is stretched, energy is stored in the elastic material by doing work against the bonds between the atoms. The energy stored $=\frac{\mathrm{ky}^{2}}{2}=$ average force times displacement.

Hooke's Law - we allowed just an equation or any correct explanation mentioning tension and displacement / extension.

EPE formula alone (without definitions) wasn't sufficient but if a correct description of energy stored was also given then the mark was given.
(b) $\mathrm{k}=\frac{\mathrm{mg}}{\mathrm{y}}=\frac{500}{16}=31.25 \mathrm{Nm}^{-1}$. Energy stored $=4000 \mathrm{~J}$.
$k=31.25 \mathrm{~N} \mathrm{~m}^{-1}$ or other correct units
If students didn't give units 1 mark was deducted - this was only done once
4000 J
If students used 9.81 rather than 10 for g ($g=10 \mathrm{~m} \mathrm{~s}^{-2}$ in question) marks were given.
(c) Let x denote the distance of Alice below the bridge. Alice accelerates downwards in freefall, with constant downward acceleration of $\mathrm{g}=10 \mathrm{~m} \mathrm{~s}^{-2}$ until $x=10 \mathrm{~m}$, with increasing downward speed $v=(\sqrt{2 g x})$. Then the rope becomes taut at $\mathrm{x}=10 \mathrm{~m}$, and acceleration downwards reduces. The speed of her fall continues to increase until the tension in the rope equals her weight, when the speed of fall is maximum and acceleration is zero. After this point, the tension exceeds the weight and the speed of fall decreases, the acceleration is upwards, until the speed falls to zero and the acceleration is maximal at the bottom of the fall.

Constant acceleration (g) down, until rope taut
Any correct description of decreasing acceleration which becomes negative (deceleration) below equilibrium (or words of acceleration goes to zero and then is upwards...)
(d) Energy conservation implies: $\frac{1}{2} k(x-10)^{2}+\frac{1}{2} m v^{2}=m g x$. This yields yields $v=\sqrt{20 x-\frac{5}{8}(x-10)^{2}}$. The speed is $14.14 \mathrm{~m} \mathrm{~s}^{-1}$ at 10 m below bridge, and $16.9 \mathrm{~m} \mathrm{~s}^{-1}$ at 15 m below the bridge.

Conservation of energy (including EPE)
Correct value of $16.86 \mathrm{~m} \mathrm{~s}^{-1}$
(if the speed down to 10 m was calculated correctly
Some students used equations of motion and received full marks if done in two sections correctly.
(e) Solve the equation for $v=0$ to find the stationary point. It's a quadratic in x with solutions of $x=50 \mathrm{~m}$ (we reject the other value because our energy equation requires the string to be in extension i.e. $x>10$.) So Alice falls 50 m before coming momentarily to rest.

State $v=0$ or $K E=0$
Use of energy equation with $m g h$ and $1 / 2 k(x+10)^{2}$
Answer $=50 \mathrm{~m}$
(f) Maximum speed occurs when tension balances weight, so acceleration at this instant is zero: $k(x-10)=$ $m g$. This solves for $x=\frac{m g}{k}+10=26 \mathrm{~m}$. Alternatively, we can get the same result by maximising the expression for speed by differentiating. The speed at this location is given by our velocity equation, and yields $19.0 \mathrm{~m} \mathrm{~s}^{-1}$
statement that max speed at equilibrium position (or $k x=m g$)
This is at 26 m
$v=19 \mathrm{~ms}^{-1}$
(g) Max acceleration is at the very bottom of the fall, is in the upward direction, and has magnitude $[k(x-$ 10) -mg$] / \mathrm{m}$ where we use the value of $x=50 \mathrm{~m}$. This yields an upwards acceleration of $15 \mathrm{~m} \mathrm{~s}^{-2}$

At the bottom
upwards
[1 mark]
$a=15 \mathrm{~m} \mathrm{~s}^{-2}$
[1 mark]
(h)

Horizontal line	[1 mark]
Linear dependence	[1 mark]
Change of sign of a	[1 mark]

If the graph was inverted then this was fine (all appropriate marks were given)

Question 2:

Throughout students were given benefit wherever possible.
(a) Key ideas =
i. path difference (or phase difference), [1 mark]
ii. constructive and destructive interference [1 mark]

Benefit given for any sensible response and 1 mark if diffraction mentioned.
No marks were given if students just repeated "interference pattern" as this was said in the question.
(b) Sketch should include
i. Maximum at $x=0$
[1 mark]
ii. A smooth sinusoidal curve (e.g. $\cos ^{2} \theta$ curve i.e. no sharp points). for both positive and negative (this must include that the peak at $x=0$ is the same width as all other peaks) [1 mark]
iii. Equally spaced minima along the x-axis with acknowledgement of the narrow slit i.e. either peaks with equal height (intensity) i.e. the theoretical pattern for double slits of infinitesimal width OR peaks with very gradual decrease in height indicating the wide envelope due to each individual slit having some width.

Only 1 mark was given if the curve looked like a single slit diffraction pattern. Similarly only 1 mark if amplitude rather than intensity was drawn.
(c) The orange double headed arrow indicates the path difference. For the 1 mark - must show the perpendicular line (in the limit of $L \gg d$).

The perpendicular had to be shown and the path difference labelled correctly - leniency with how it was labelled was given here. E.g. if student said L1 - L2 then benefit given.
(d)
i. For the first minimum the path difference $=\lambda / 2$
ii. Therefore diagram, $d \sin \theta$, gives

$$
\begin{aligned}
& \frac{d x}{L}=\frac{\lambda}{2} \quad \text { where } \sin \theta \approx \tan \theta=\frac{x}{L} \text { (i.e. some reference to the application of the small angle } \\
& \text { approximation or rather } d \ll L) \\
& \text { [1 mark] }
\end{aligned}
$$

iii. $\quad x=\frac{\lambda L}{2 d}$;

Because this question asks the students to derive the expression, if a student just writes down a correct expression without explanation of where it comes then they just receive 1 mark out of 3 . If they derive it without a factor of 2 then 2 out of 3 . Some students attempted the path difference using Pythagoras - if this was done correctly then all the marks were given, and partial marks were given as appropriate.
(e) 1 mark for each of F, G and H either by writing the whole expression

$$
\begin{gathered}
A=2 A_{0} \cos \left(\frac{2 \pi \Delta L}{\lambda}\right) \cos \left(\omega t-\frac{2 \pi L}{\lambda}\right) \text { [cosines can be written either way around] OR } \\
F=2 A_{0} ;\left(\frac{2 \pi \Delta L}{\lambda}\right) ; H=\left(\omega t-\frac{2 \pi L}{\lambda}\right) \text { [again order of } G \text { and } H \text { does not matter] }
\end{gathered}
$$

If students lost a factor of 2 in both G and $H, 1$ mark out of the 2 was given. If G and H hadn't been simplified but correctly applied one mark out of the 2 was given.
(f) If $t=0$
$A=2 A_{0} \cos \left(\frac{2 \pi \Delta L}{\lambda}\right) \cos \left(\frac{2 \pi L}{\lambda}\right)$ and $\cos \left(\frac{2 \pi \Delta L}{\lambda}\right)=0$
therefore $\frac{2 \pi \Delta L}{\lambda}=\frac{\pi}{2}, \frac{3 \pi}{2}$
So, $\Delta L=\frac{\lambda}{4}, \frac{3 \lambda}{4}$
[2 marks]
Leniency was given here with errors carried forward and students were given 3 out of 4 if this was the case. If only one value was given instead of two, but was done correctly, 3 out of 4 was given.
(g) Either calculating wavelength first
$\lambda=\frac{2 d x}{L}=600 \mathrm{~nm}$ [2 marks]
therefore $\Delta L=\frac{\lambda}{4}=150 \mathrm{~nm}$ [2 marks]

OR calculating the path difference first
From part (d) ΔL corresponds to half the path difference, $\Delta L=\frac{d x}{2 L} \quad$ [1 mark]
Therefore $\Delta L=\frac{10^{-4} \times 1.5 \times 10^{-2}}{2 \times 5.0}=150 \times 10^{-9} \mathrm{~m}(150 \mathrm{~nm})$ [1 mark]

Therefore from part (f): $\lambda=4 \times \Delta L$
[1 mark]

$$
=600 \mathrm{~nm}
$$

[1 mark]
Students with errors carrying forward were given one out of two for each part. i.e. if methods were correct then 2 out of 4 .

If students failed to include units 1 mark was deducted. (a maximum of 1 mark was deducted)

Chemistry

Question 1

Data: Assume that the molar gas volume $=24.0 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ at room temperature and pressure (rtp).
a) When lithium metal and hydrogen gas are heated together, a single substance, \mathbf{A}, is formed as colourless crystals with a melting point of $688^{\circ} \mathrm{C}$. Molten \mathbf{A} conducts electricity, and electrolysis of the molten substance re-forms the elements.
(i) Give an equation for the formation of \mathbf{A}.

Answer:

$$
2 \mathrm{Li}(\mathrm{~m})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{LiH}(\mathrm{~s})(\mathbf{A})
$$

(ii) Classify the structure of \mathbf{A} as either molecular covalent, giant covalent, or ionic. Briefly justify your answer.
[2 marks]
Answer: \qquad ionic because (1) high melting point and (2) conducts on melting \qquad
\qquad
\qquad
\qquad
(iii) During the electrolysis of molten \mathbf{A}, which element appears at the positive electrode (the anode) and which appears at the negative electrode (the cathode)?

Answer: anode $=$ oxidation: H_{2} appears
cathode $=$ reduction: Li appears \qquad
b) Substance \mathbf{A} reacts with aluminium chloride to form lithium aluminium hydride $\left(\mathrm{LiAlH}_{4}\right)$ and one other by-product.

Give a balanced chemical equation for the formation of lithium aluminium hydride from \mathbf{A} and aluminium chloride.
[2 marks]
Answer: \qquad
$4 \mathrm{LiH}(\mathrm{s})+\mathrm{AlCl}_{3}(\mathrm{~s}) \rightarrow \mathrm{LiAlH}_{4}(\mathrm{~s})+3 \mathrm{LiCl}(\mathrm{s})$ \qquad A
\qquad
c) When 3.8 g of lithium aluminium hydride is heated to $125^{\circ} \mathrm{C}$, it decomposes to give three substances: 1.8 g of aluminium metal, $2.4 \mathrm{dm}^{3}$ of a flammable gas (measured at rtp), and substance B.

Determine the formula for substance \mathbf{B}.

Answer: $2.4 \mathrm{dm}^{3}$ of gas at rtp corresponds to $2.4 / 24.0=0.10 \mathrm{~mol}$ of the gas \qquad
$. M_{r}\left(\mathrm{LiAlH}_{4}\right)=6.94+26.98+4 \times 1.008=37.952 \mathrm{~g} \mathrm{~mol}^{-1}$ \qquad
3.8 g of LiAlH_{4} corresponds to $3.8 / 37.952=0.10 \mathrm{~mol}$ \qquad
.1 .8 g of Al corresponds to $1.8 / 26.98=0.067 \mathrm{~mol}$ \qquad
flammable gas likely to be H_{2} \qquad
$3 \mathrm{LiAlH}_{4}(\mathrm{~s}) \rightarrow 2 \mathrm{Al}(\mathrm{m})+3 \mathrm{H}_{2}+\mathrm{Li}_{3} \mathrm{AlH}_{6}$ \qquad
$1 \mathrm{~mol}2 / 3 \mathrm{~mol} . .1 \mathrm{~mol} .$. . B \qquad
d) Lithium aluminium deuteride can be prepared if deuterium gas is used in place of normal hydrogen. Deuterium, often give the symbol D, is the non-radioactive isotope of hydrogen, i.e. $\mathrm{D}={ }^{2} \mathrm{H}$. The formula for lithium aluminium deuteride can be written LiAlD_{4}. Both LiAlH_{4} and LiAlD_{4} are common reducing agents and the latter is useful for preparing deuterium-containing compounds.

Isomers of mono-deuterated propane, \mathbf{X} and \mathbf{Y}, may be prepared from propene according to the following scheme which also uses hydrogen chloride, HCl , and deuterium chloride, DCl. In the scheme, only the carbon-containing compounds are shown; other by-products are not.

Give the structures of \mathbf{X} and \mathbf{Y} and the intermediates \mathbf{Q} and \mathbf{R} formed during the syntheses.
[4 marks]
Answer: \qquad

e) 2,2-dideuterated propane may be prepared easily in two steps, from a mono-deuterated propene, \mathbf{Z}. (The formula for \mathbf{Z} is $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{D}$.)
(i) Draw the structures of all the alkenes with formula $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{D}$.
[2 marks]
Answer: \qquad

(ii) Give a synthesis of 2,2-dideuterated propane starting from \mathbf{Z} showing reagents and intermediates in each step.

Answer:

Z

Question 2

Read the preamble carefully before proceeding to answer the question.

In their solid (crystalline) form many inorganic salts (such as NaCl or MgF_{2}) can be thought of as consisting of a giant lattice in which positive ions (e.g. $\mathrm{Na}^{+}, \mathrm{Mg}^{2+}$) and negative ions (e.g. $\mathrm{Cl}^{-}, \mathrm{F}^{-}$) are arranged in a regular pattern, called a lattice. The ions are held together by electrostatic forces arising from the favourable interactions between ions of opposite charge.

The lattice enthalpy is the enthalpy change for a process in which the solid material is formed from ions in the gas phase. For $\mathrm{NaCl}(\mathrm{s})$ this is the process

$$
\mathrm{Na}^{+}(\mathrm{g})+\mathrm{Cl}^{-}(\mathrm{g}) \rightarrow \mathrm{NaCl}(\mathrm{~s})
$$

and for MgF_{2} the process is

$$
\mathrm{Mg}^{2+}(\mathrm{g})+2 \mathrm{~F}^{-}(\mathrm{g}) \rightarrow \mathrm{MgF}_{2}(\mathrm{~s})
$$

The lattice enthalpy is invariably large and negative.
The lattice enthalpy in $\mathrm{kJ} \mathrm{mol}^{-1}$ can be estimated using the following expression

$$
\frac{-1.07 \times 10^{5} \times n_{\text {ions }} \times z_{+} \times z_{-}}{r_{+}+r_{-}}
$$

Equation 1

In this expression, r_{+}is the radius of the positive ion, in $\mathrm{pm}\left(1 \mathrm{pm}=10^{-12} \mathrm{~m}\right)$, and r_{-}is the radius of the negative ion, also given in pm.
$n_{\text {ions }}$ is the number of ions in the formula unit; for example, for $\mathrm{NaCl} n_{\text {ions }}=2$, but for $\mathrm{MgF}_{2} n_{\text {ions }}=3$. z_{+}is the charge number on the positive ion; for example for Na^{+}it is 1 , but for Mg^{2+} it is 2 . z_{-}is likewise the absolute value of the charge number on the negative ion: for Cl^{-}it is 1 (not -1).
a) Use Equation 1 to calculate the lattice enthalpy for CuF_{2} given the following data:

$$
r_{+}=73 \mathrm{pm}, \quad r_{-}=133 \mathrm{pm}
$$

Answer:

$$
\frac{-1.07 \times 10^{5} \times 3 \times 2 \times 1}{73+133}=-3120 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

\qquad
\qquad
\qquad
\qquad
b) Use Equation 1 to calculate the lattice enthalpy for CuF_{3} given the following data:

$$
r_{+}=54 \mathrm{pm}, \quad r_{-}=133 \mathrm{pm}
$$

Answer:

$$
\frac{-1.07 \times 10^{5} \times 4 \times 3 \times 1}{54+133}=-6870 \mathrm{~kJ} \mathrm{~mol}^{-1} .
$$

\qquad
\qquad
\qquad
c) Calculated values of the lattice enthalpy can be used to estimate the enthalpy change of hypothetical reactions, such as

$$
\mathrm{CuF}_{2}(\mathrm{~s})+\frac{1}{2} \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow \mathrm{CuF}_{3}(\mathrm{~s})
$$

Determine the oxidation state of copper in each of the species and hence classify what kind of reaction this is.

Answer: \qquad
. CuF_{2} : assume $\mathrm{F}=-1$, so Cu is +2 (as species neutral) \qquad
CuF_{3} : assume $\mathrm{F}=-1$, so Cu is +3 (as species neutral).
This is a redox reaction.
d) The enthalpy change for the reaction in Equation 2 can be calculated using the following Hess's Law cycle.

Using your results from parts \mathbf{a}) and \mathbf{b}), and given the following enthalpy changes below

$$
\begin{array}{ll}
\mathrm{F}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{~F}^{-}(\mathrm{g}) & \Delta H=-540 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{Cu}^{2+}(\mathrm{g}) \rightarrow \mathrm{Cu}^{3+}(\mathrm{g})+\mathrm{e}^{-} & \Delta H=3555 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{array}
$$

calculate the enthalpy change for:

$$
\mathrm{CuF}_{2}(\mathrm{~s})+\frac{1}{2} \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow \mathrm{CuF}_{3}(\mathrm{~s})
$$

Answer: ...

...Required value is $3120+3555-(1 / 2) 540-6870=-465 \mathbf{k J m o l}^{-1} \ldots$
e) Use the data given below to calculate the enthalpy change for the following reaction (M is an unspecified metallic element).

$$
2 \mathrm{MF}_{2}(\mathrm{~s}) \rightarrow \mathrm{MF}_{3}(\mathrm{~s})+\mathrm{MF}(\mathrm{~s})
$$

You may find it helpful to start by constructing an appropriate Hess's Law cycle.

$$
\begin{array}{ll}
\mathrm{MF}_{2}(\mathrm{~s}) \rightarrow \mathrm{M}^{2+}(\mathrm{g})+2 \mathrm{~F}^{-}(\mathrm{g}) & \Delta H=3000 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{MF}_{3}(\mathrm{~s}) \rightarrow \mathrm{M}^{3+}(\mathrm{g})+3 \mathrm{~F}^{-}(\mathrm{g}) & \Delta H=7000 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{MF}(\mathrm{~s}) \rightarrow \mathrm{M}^{+}(\mathrm{g})+\mathrm{F}^{-}(\mathrm{g}) & \Delta H=1000 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{M}^{+}(\mathrm{g}) \rightarrow \mathrm{M}^{2+}(\mathrm{g})+\mathrm{e}^{-} & \Delta H=2000 \mathrm{kJmol}^{-1} \\
\mathrm{M}^{2+}(\mathrm{g}) \rightarrow \mathrm{M}^{3+}(\mathrm{g})+\mathrm{e}^{-} & \Delta H=3000 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{array}
$$

Answer:

Required value is $2 \times 3000+3000-2000-7000-1000=\mathbf{- 1 0 0 0} \mathbf{k J m o l}^{-1}$.

Biology

Question B1

a) Identify the types of cells that can be seen in Fig. (i) and (ii).
[2 marks]

Fig. (i)

$20 \mu \mathrm{~m}$

Answer:
(i) Eukaryote (1/2 mark), Plant cell (1 mark)
(ii) Prokaryote (1/2 mark), Bacterium (1 mark)
b) Why was an electron microscope used to create these images?

Answer: The structural features are to small to see with the naked eye, but electron microscopes give greater resolution of smaller objects (only $1 / 2$ mark given if resolution is not mentioned)
c) Assume that the scale bar below each image is 3 cm long.

Estimate the magnification of each image.
[2 marks]

Answer:

(i) $=30,000 / 20=1,500 x$
(ii) $=30,000 / 0.5=60,000 x$
d) Discuss the evolutionary order of appearance of the mitochondrion, chloroplast and ribosome, explaining your reasoning.

Answer: Ribosome, Mitochondrion, Chloroplast (1 mark)

The order can be inferred by which organisms have them: All cellular organisms have ribosomes, only Eukaryotes have Mitochondria, and only plants have chloroplasts.
(2 marks)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
e) Estimate the percentage of the volume of the cell that the nucleus takes up in Fig. (i), assuming that the cell can be approximated as a cube and the nucleus as a sphere.
(The volume of a sphere is $\frac{4}{3} \pi r^{3}$ where r is the radius of the sphere.)
Answer: Students should show appropriate working, but do not actually need to convert values into the real measurements (1 mark)

Answer can be between 6\% and 20\% (1 mark)
\qquad
\qquad
f) Discuss how differences in the structure of the cells shown in Fig. (i) and (ii) affect the locations of different processes within these cells.
[10 marks]

Answer:

Students should state that in eukaryotes:
Aerobic respiration occurs in Mitochondria (1 mark)
Photosynthesis occurs in Chloroplasts (1 mark)
DNA replication occurs in the Nucleus (1 mark)

They should state that in bacteria:
Respiration and photosynthesis take place on the external membrane (1 mark)
DNA replication occurs in the cytoplasm (1 mark)

Further marks (up to 5) are available for more advanced arguments, such as:

- Knowing that glycolysis occurs in the cytoplasm of both cells
- Identifying that eukaryotes have more membranes/SA for reactions
- Identifying that compartmentalisation allows physical boundaries for reactions
- Identifying that compartmentalisation creates micro-environments
- Particularly advanced accounts of where cellular processes occur (e.g meiosis)
- Details of other cellular compartments (e.g peroxisomes, lysosomes, the ER, Golgi)
- Particularly direct comparisons between the two cells
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question B2

a) From the following list of organisms identify one that can reproduce itself (i) without using mitosis or meiosis, and (ii) using either mitosis alone or meiosis.

1 Homo sapiens

2 Fragaria ananassa (strawberry)

3 Escherichia coli

Answer:
(i) E. coli (1 mark)
(ii) F. ananassa (1 mark)
b) For the processes of mitosis and meiosis, draw separate line graphs to show how the relative amount of DNA in a single healthy dividing cell changes with time.

You should label the axes on the graphs.
(Assume that no mutations occur.)

Answer:

Figures can vary slightly, but should have:

Axes with time and relative amount of DNA (1 mark)

A clear doubling and halving of the amount of DNA in Mitosis (1 mark)
A clear second round of halving in Meiosis (1 mark)

c) Calculate how many possible combinations of chromosomes could be produced in each gamete during sexual reproduction in humans (assuming no recombination).

Answer: $2^{23}=8388608$ (either will do)
\qquad
\qquad
\qquad
d) A female has a recessive disease-causing allele on one of her non-sex-determining chromosomes. She mates with a male with the same disease-causing allele on one of his chromosomes. They have one child. Assuming that no mutations occur, what is the probability that:
(i) this child will have the disease?

Answer: 1/4 (1 mark)

\qquad
\qquad
(ii) this child is male and does not have the disease?

Answer: 3/8 (2 marks)
\qquad
\qquad
\qquad
\qquad
e) Discuss:
(i) how different mechanisms of reproduction affect the levels of variation in the next generation;
(ii) how variation affects the likelihood of survival in a changing environment.

Answer:
Students should:

1. State that Asexual organisms produce clones with little variation (1 mark)
2. State that Sexual organisms have increased variation in offspring (1 mark)
3. Explain one way in which variation is generated by sex (e.g independent assortment, recombination, random fertilisation etc) (1 mark)
4. State a factor that influences variation in both reproductive types (environment, mutation) (1 mark)
5. State that variation leads to differential survival and those best adapted survive (1 mark)

Further marks (up to 5) are available for more advanced arguments, such as:

- Outlining more than one way in which variation is generated in sexual organisms
- Explaining how variation can be generated in an asexual organism (e.g environment, conjugation)
- Giving specific examples of either type of reproduction.
- Referring to the genetics of variation (e.g. mendelian genetics, polygenic systems)
- Explaining that sexual organisms may be more prone to extinction because they cannot adapt quickly enough.
- Giving a particularly detailed account of natural selection
- Giving a specific example of where selection acts upon variation

